

Investigating Crystallization in Thin Films using High Throughput Methodologies *Isotactic Polystyrene*

Kathryn L. Beers, Jack F. Douglas, Eric J. Amis and Alamgir Karim

National Institute of Standards and Technology Polymers Division

NIST Combinatorial Methods Center Kick-Off Meeting January 2002

Semi-crystalline Polymer Thin Films

Industrial Motivation:

- Semicrystalline commodity materials (PP/PE, PLA, PC, PEG, ...)
- Effect control of mechanical and optical properties, conductivity and permeability

Scientific Issues:

- Cooperativity in chain folding and diffusion, lamellar thickening, fractionation
- Molecular self-assembly
- Control of pattern formation → molecular architecture

Objectives:

 Establish relevant length scales in model thin films for dominant forces influencing crystallization rate and morphology

Amorphous / Semi-crystalline Polymer Blends

PMMA/PEO Blends in Thin Films:

- Crystallization patterns tuned through polymer composition
- •Competition with phase separation (below UCST) changes å
- High F_{PMMA} leads to fractal dendrites (diffusion limited aggregation)

Ferreiro et al., Phys. Rev. E, submitted.

Modeling Morphologies

- Model simulations based on solidification in twodimensional fluid mixtures (Cu-Ni alloys)
- Varying å, seaweed and dendrite structures are obtained
- No spherulitic (elasticity) or fractal morphologies to date

Phase-Field Simulated Hexagonal Dendrite (J. Warren)

J. A. Warren and W. J. Boettinger, Acta Metall. Mater., 1995, 43, 689.

Why Isotactic Polystyrene (ipS)?

- Substantial literature on the crystallization of ipS in bulk and thin films
- ipS crystallizes slowly and on timescales measurable by "high-throughput" optical microscopy

- high T_g: Films quenched at room temperature
- Temperature stage spans T_q to near T_m (218 °C)

Flow Coating

Combinatorial / High-throughput Polymer Crystallization

- Access to larger parameter space
- Faster
- Cheaper

- Potential to Investigate multiple parameters:
 - Under-cooling temperature
 - Film thickness
 - Nucleating agents
 - Surface energy gradients
 - Surface pattern gradients

Temperature Gradient Stage

Optical Image Library

Effects of T on Growth Rates, G

Effects of T on Growth Rates

J. Boon, et al., J. Poly. Sci. A-2, 1968, 6, 1791.

Effects of h on Growth Rates

COMBI – Izumi

Dependence of rate on film thickness:

 $G(h) = G(\infty)(1-d/h)^*$

*S. Sawamura, et al., J. Phys. Soc. Jpn., 1998, 67, 3338.

Effects of T on Structure (h > 23 nm)

Scale Bars: 5 μm

Effects of h on Structure

T = 186°C

h = 24 nm

$$T = 186^{\circ}C$$

T = 186°C h = 19 nmh = 15 nm

Scale Bars: 10 µm

Effects of T on Dendritic Structures

Scale Bars: 10 μm

Structural Control Factors

Focusing on Target Areas: NSOM

in x-y plane

Samples prepared on a shallow temperature gradient for short times can contain a narrow range of size and structures.

objective

L. Goldner and M. Fasolka

Optical Technology Division

NIST

51

In collaboration with:

intensity

NSOM Polarimetry

Topology (from force feedback)

Dichroism (z-scale 0-4%)

Scale bars: 1 µm

L. Goldner and M. Fasolka, Optical Technology, NIST

Angle of Birefringence (z-scale 0-180°)

 NSOM polarimetry may provide insight into more complex optical activity for multiple crystal structures

Conclusions

- Crystal growth rates of isotactic polystyrene as a function of h and T on continuous gradient films agree with literature. G passes through a maximum near 180°C and decreases with h below 80 nm.
- Morphological transitions with T and h are similar to a recent publication. As h approaches R_g, spherulites are replaced by hexagonal dendrites.
- First evidence of competition between surface tension anisotropy and viscoelastic effects in crystallization.

Future Directions

- New measurement techniques
 - Mechanical and optical properties of semi-crystalline films
 - Kinetics in faster crystallizing films
 - Access to continuous parameter space on film
 - Structural probes during crystal formation
- Development of new informatics techniques (image analysis)
- Extension to polymers, blends and parameters of interest
 - iPP, PEG, PLA
 - Nucleating agents, surface energy or pattern gradients

Acknowledgments

Vincent Ferrreiro
Jim Warren

Lori Goldner Michael Fasolka

Archie P. Smith Amit Sehgal Alfred Crosby

\$\$
National Research Council